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Abstract

This paper deals with the establishment of anisotropic conjugate force!based damage evolution laws in
the framework of Rice|s "0860# {normality structure|[ Attention is particularly focused on the second!order
damage tensors based on the fabric tensor\ which represents preexisting Gri.th microcracks in solids during
small deformation\ isothermal and time!dependent processes[ The principal results include the deduced
damage surfaces\ potentials and kinetic equations for the basic internal variables\ damage vectors and
damage tensor[ For the damage tensor it is shown that the deduced damage surfaces in a.nity space have
a parallel relation with the Tresca and Mises yield conditions in stress space and that the damage characteristic
tensor J can be determined uniquely by the current damage tensor without resorting to microscopic
parameters or unknown empirical coe.cients[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

In anisotropic damage models with second!order damage tensors\ the damage evolution laws
have been the most elusive parts due to their complex tensorial and high!degree nonlinear proper!
ties[ Of various forms\ the damage evolution laws in a.nity space based on the linear irreversible
thermodynamics are the ones most often used\

Vþ � J] Y "0#

where V is the second!order damage tensor^ Y is the thermodynamic force conjugate to the damage
tensor^ and J is the damage characteristic tensor of rank four\ see e[g[\ Chow and Lu "0878#[ The
damage evolution law de_ned by eqn "0# is also termed the phenomenological equation in irre!
versible thermodynamics\ see e[g[ Malvern "0858#[ In this paper\ the essential problem is to identify
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the conditions of the phenomenological eqn "0# and the speci_c form of the damage characteristic
tensor J[

The essential problem cannot be solved in phenomenological damage models\ where the linear
rule eqn "0# is taken as a prerequisite rather than a conclusion[ Even if the linear rule really holds
true\ irreversible thermodynamics or current available experimental data is not enough to determine
the damage characteristic tensors J uniquely[ Chow and Lu "0878# summarized various J tensors\
e[g[\ from Chaboche\ Lee\ MurakamiÐOhno\ Sidoro}ÐCordebois\ etc[\ which generally contained
one or two unknown empirical coe.cients and had oversimpli_ed tensorial forms[ The reason is
simple[ From a purely tensorial viewpoint\ two coe.cients can only describe an isotropic tensor
of rank four^ on the other hand\ the introduction of more unknown coe.cients makes a phenom!
enological model less practicable[

Micromechanical methods appear to be feasible ways to remove the uncertainties in anisotropic
models[ Deducing a conjugate force!based damage evolution law from a stress!based microscopic
model is\ however\ very di.cult if not impossible\ especially for a second!order damage tensor
model[ Some micromechanical damage models have been proposed to bridge the gap\ e[g[\ Krajci!
novic et al[ "0880#\ Krajcinovic and Fonseka "0870# and Ilankamban and Krajcinovic "0876#[
However\ these were not damage tensor models and still belonged to phenomenological models\
because their basic relations were postulated[ In these models\ essentially only the geometric
features of the microscopic model were incorporated into constitutive models[ On the other hand\
some {complete| micromechanical models\ in which macroscopic behaviour was fully determined
by the microscopic defect models\ were proposed and possessed the least ambiguity\ see e[g[\ Ju
and Lee "0880#\ Kachanov "0871#\ Dragon "0874#\ etc[ Unfortunately\ their _nal macroscopic
constitutive equations were stress!based[

In this paper\ the essential problem is solved in the framework of Rice|s "0860# {normality
structure|[ The basic internal variables j are the numerous vector form variables\ and each of them
corresponds to one Gri.th microcrack weakening the solid[ The damage tensor V is taken as the
average measure for j[ Damage vectors z are introduced as the intermediate average measures
between j and V[ To focus on the essential problems\ only small deformation\ isothermal and
time!independent processes are considered[ The damage surfaces\ potentials and kinetic equations
on the three levels\ j\ z and V\ have been deduced exclusively in the a.nity space without
considering the speci_c form of the Gibbs energy or free energy[ The interaction of the microcracks
is taken into account implicitly since the normality structure is within the framework of the self!
consistent method[

The starting point of this deduction is the kinetic equation of one basic internal variable\ as
de_ned in eqn "03#[ It represents such a class of materials to which the in~uence of the macroscopic
stress:strain appears only through the conjugate forces[ Since one basic internal variable cor!
responds to one microcrack\ its kinetic equation should be consistent with the cracking criterion
in fracture mechanics[ In Section 4\ some numerical tests have been done to show the behaviour
of the kinetic equation and make a comparison between the two criteria[

1[ Damage de_nitions

Consider a material sample of size V9 weakened by n microcracks[ The microstructure of the
sample can be characterized using the following set of basic internal variables]
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j � "j0\ j1\ [ [ [ \ jn#\ ja � "na\ ra# "1#

where na and ra are the normal vector and radius\ respectively\ of a!th microcrack[
To much reduce the number of the basic internal variables\ m"m ð n# damage vector zm are

introduced as the average measure of j

z � "z0\ z1\ [ [ [ \ zm#\ zm � "nm\ vm# "2#

where the m!th damage vector zm � "nm\ vm# is the average measure of one group of nm roughly
parallel microcracks among all microcracks[ Without a loss of generality\ m can be dropped in the
following average expression

n �
0
n

s
n

i�0

ni\ v �
0

V9
s
n

i�0

r2
i "3#

The second!order damage tensor Vij is introduced just as the average measure of the damage
vectors

V � s
m

m�0

vmn
mnm "4#

The damage variable v takes the form of the third!order moment of microcrack radii\ as shown
in eqn "3b#[ The damage tensor is just the second!order fabric tensor]

V �
0

V9
s
n

a�0

r2
an

ana "5#

if the cracks in each group\ see eqn "3#\ are parallel exactly with each other[

2[ Normality structure

The framework illustrated here is generally the same as Rice|s "0860# original {normality struc!
ture|[ Formulation is extended to have a unitary form for both time!dependent and time!inde!
pendent behaviour[ Here only the small deformation and isothermal processes have been
considered\ rather than the original _nite strain and thermo!elasticity[ It is noted that one internal
variable\ ja or zm should be understood as a vector "originally scalar# in this paper[ Introduce the
speci_c free energy f and its Legendre transform c with respect to strain o � oij

f � f"o\ j# � u−uh\ c � c"s\ j# � o]
1f

1o
−f "6#

where s � sij is the stress tensor^ u speci_c internal energy\ h speci_c entropy^ u temperature^
and c the complementary energy also termed Gibbs energy[ When neighbouring constrained
equilibrium states corresponding to di}erent sets of internal variables are considered\ the _rst law
of thermodynamics takes the form
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o] s¾¦
0

V9
faj¾a � c¾ "7#

which de_nes the thermodynamic forces f0\ f1\ [ [ [ \ fn "collectively f# acting on the internal variables\

fa � V9 1c"s\ j#
1ja

� −V9 1f"o\ j#
1ja

"8#

and leads to

o �
1c"s\ j#

1s
\ s �

1f"o\ j#
1o

"09#

The second law of thermodynamics further requires faj¾a − 9[ Since o � o"s\ j# from eqn "09#\ the
strain rate can be expressed as

o¾ � o¾
e¦o¾

d\ o¾
e �

1o"s\ j#
1s

] s¾ \ o¾
d �

1o"s\ j#
1ja

j¾a "00#

where o¾e is the elastic strain rate due to the change of stress at the _xed internal variables\ and can
be expressed by using eqn "09#

o¾
e �

11c

1s 1s
] s¾ "01#

and o¾d is the inelastic strain rate0 due to the change of the internal variables and can be expressed
using eqns "09# and "8#

o¾d �
0

V9

1fa"s\ j#
1s

j¾a "02#

In the normality structure\ the kinetic equations of internal variables are required to take the form

j¾a � j¾a" fa\ j#\ "a � 0\ 1\ [ [ [ \ n# "03#

Then\ Q is a point function if set

Q � Q"f\ j# �
0

V9 g
f

9

j¾a"f\ j# dfa "04#

Therefore\ the kinetic equation of internal variables can be recast as

j¾a � V9 1Q"f\ j#
1fa

"05#

The function Q is just the potential function of inelastic strain[ Note that Q � Q"f\ j# � Q"s\ j#
since f � f"s\ j#[ Thus\ in view of eqns "02# and "05#\

0 The framework in this section is suitable to accommodate either plasticity or damage[
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o¾d �
1Q"s\ j#

1s
"06#

Since ja corresponds to one microcrack\ the total number n of j is very large[ One set of much
reduced internal variables z can be introduced as the average measures of j

zm � zm"j0\ j1\ [ [ [ \ jn^ V9# "m � 0\ 1\ [ [ [ \ m ð n# "07#

where V9 indicates averaging over the volume[ Formulation in terms of the average internal
variables z is parallel to that in terms of j

o �
1c"s\ z#

1s
\ `m �

1c"s\ z#
1zm

\ o¾
d �

1`m"s\ z#
1s

z¾m

z¾m �
1Q"g\ z#

1`m

\ o¾
d �

1Q"s\ z#
1s

\ Q"g\ z# � g
g

9

z¾m"g\ z# d`m "08#

where `0\ `1\ [ [ [ \ `m "collectively g# are the thermodynamic forces acting on the internal variable z[
The equivalence for the average measure z to describe the thermodynamic system characterized
by its basic internal variable\ j\ is achieved by requiring the equality for all dj

`mdzm �
0

V9
fadjacQ"g\ z# � Q"f\ j# "19#

In other words\ the equivalence is achieved by recasting Q"f\ j# as Q"g\ z#[
The kinetic equations eqn "03# is generally suitable for time!dependent behaviour[ For time!

independent behaviour\ the existence of the potential Q in eqn "04# is questionable\ because not
all internal variables are certainly active under a loading[ In order to extend the formulation to take
into account time!independent behaviour\ the damage "yield# surfaces F0\ F1\ [ [ [ \ Fn "collectively F#
for basic internal variables j are introduced\ and the kinetic equation eqn "03# can be recast as

j¾a � j¾a" fa\ j# � l¾aK
a" fa\ j#\ "a � 0\ 1\ [ [ [ \ n# "10#

where

l¾a � 8×9 if Fa � 9 and
1Fa

1fa
f¾a × 9 "no summation for a#

9 otherwise

"11#

where l¾a can be determined by the consistency condition Fþa � 9 if l¾a × 9[ Thus\ the potential
function Q in eqn "04# still exists in form but should be rewritten as Q"f\ j\ F# to re~ect its
dependence on the damage surfaces F[ Similarly\ there also exist damage "yield# surfaces
F0\ F1\ [ [ [ \ Fm "collectively F# for the condensed internal variables z and the corresponding
potential function Q"g\ z\ F#[

In short\ the _rst step in the normality structure is to establish the kinetic equations and damage
surfaces of the basic internal variables j[ The main task in pursuing the kinetic equations of the
condensed internal variable z from that of j\ in reality\ is the transformation "f\ j\ F#c"g\ z\ F#[
The crux in the transformation is the establishment of the relation\ j � j"z# which is the inverse
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Fig[ 0[ Schematic crack propagation[

function of eqn "07#[ The inverse function cannot be determined uniquely by eqn "07# since z\ as
an average measure of j\ is determined uniquely by j but not conversely[ It is the uncertainty
that re~ects mathematically the fact that z can only furnish an approximate description for a
thermodynamic system characterized by j[

In this paper\ we deal with the uncertainty by replacing j with j¼[ Here\ j¼ is one set of _ctitious
basic internal variables and subject to the conditions] "0# z � z"j# � z"j¼#^ "1# j¼ should be deter!
mined uniquely by z[

The preceding formulation takes crack interactions into account implicitly[ As pointed out by
Krajcinovic et al[ "0880#\ the normality structure is exactly within the framework of the self!
consistent method[

3[ Kinetic equations of basic internal variables

The kinetic equations of basic internal variables\ j¾a" fa\ j#\ are the cornerstones of the normality
structure[ These equations comprise the damage potential Q\ which is the basis for the kinetic
equations of damage variables z and V[ Since ja corresponds to one microcrack\ j¾a" fa\ j# must be
compatible with cracking criteria in fracture mechanics[

3[0[ Crackin` criteria

Of several types of cracking criteria in linear fracture mechanics\ we shall consider the energy
principle[ For a specimen in Fig[ 0 subjected to certain external forces\ the energy principle "see
e[g[ Broek\ 0876# in accordance with Gri.th|s criterion\ postulates that cracking initiates if

G � R "12#

where R is the crack resistance or R!curve\ and G is the energy release rate[

G �
d"W−U#

da
"13#
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where U is the elastic energy contained in the specimen\ and W is the work performed by the
external force[

In general\ the crack propagates not along the original plane but with kinking\ see Fig[ 0[ The
well!known criteria to determine the kinking angle u include] "0# s"u#max theory by Erdogan and
Sih "0852# that crack extension starts in a plane normal to the direction of maximum circumferential
stress s"u#max near the crack tip^ "1# S"u#min theory by Sih "0862# that crack extension occurs in the
direction along which strain energy density S"u# possesses a minimum value^ "2# G"u#max theory by
Hussain et al[ "0863# that crack extension starts in the direction along which energy release rate
G"u# possesses a maximum value[

G"u#max theory is adopted in this section\ because it is an energy principle and consistent with
the principle of maximum dissipation in thermodynamics[ Note that "W−U# in eqn "13# is the
dissipated energy for brittle materials[ Therefore\ G"u#max theory implies that\ for a given crack
increment da\ the system tends to dissipate maximum energy by cracking at a speci_c kinking
angle u[

3[1[ Rotation rate

Consider a specimen of volume V9 with n microcracks[ The dissipated energy of the a!th
microcrack during its propagation is

d"W−U# � fa dja "no summation for a# "14#

The following discussions all focus on the a!th microcrack[ Thus\ we can drop a in the section
without a loss of generality[ The conjugate force f de_ned in eqn "8# should possess a vector form

f � V9 1c

1j
� "fn\ fr# � V9 6

1c

1n
\
1c

1r7� −V9 6
1f

1n
\
1f

1r7 "15#

Thus\ the dissipated energy can be recast as

d"W−U# � f dj � fn = dn¦fr dr "16#

Note that the crack length increment da in eqn "13# should be replaced with the crack area
increment dA in a general 2!D case[ The area vector of the penny crack can be de_ned as

A � pr1nc dA � pr1 dn¦1prn dr "17#

and note that

n = n � 0c n = n¾ � 9 "18#

Thus\ the area increment of the penny crack is obtained as

dA � =dA= � zdA = dA � 1prz0¦z = z dr "29#

where



G[ Swoboda\ Q[ Yan` : International Journal of Solids and Structures 25 "0888# 0624Ð06440631

Fig[ 1[ Schematic kinking crack equivalence[

z �
r
1

n¾

r¾
"20#

The kinking angle u of the crack may be de_ned in an average sense as

cos u � n =
dA

=dA=
�

0

z0¦z = z
c tan u � =z= � zz = z "21#

which is schematically illustrated in Fig[ 1[ Using eqns "16# and "29#\ the energy release rate of the
a!th microcrack is found to be

G �
d"W−U#

dA
�

1fn = z¦frr

1pr1z0¦z = z
"22#

Since z determines the kinking angle u uniquely\ the G"u#max theory requires that the actual z

should maximize the energy release rate G[ Note that due to eqn "18# the components of z are not
mutually independent]

n = z � 9 "23#

Thus\ the maximization problem corresponds to such a Lagrangian extreme!value problem\

L � G¦ln = z\
1L

1z
� 9 "24#

Omitting the detailed deduction "see Yang\ 0885#\ the rotation rate is obtained as

z �
1
frr

"fn−fnn = n#\ or n¾ �
3"fn−fn = nn#

frr
1

r¾ "25#

3[2[ Kinetic equations

Equation "25# can be recast as an equivalent form

"n¾\ r¾# � l¾ 6"I−nn# = fn\ 0
r
11

1

fr7 "26#

or
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j¾ � l¾K\ K � 6"I−nn# = fn\ 0
r
11

1

fr7 "27#

which is exactly the required kinetic equation eqn "10#[ In accordance with eqn "12#\ the local
damage surface can take the form

F � G−R "28#

where energy release rate G is obtained by substituting z into eqn "22#

G �
0

pr1Xfn = fn−"fn = n#1¦0
frr
1 1

1

"39#

or an equivalent form

G � zG1
n¦G1

t \ where Gn �
0

pr1
zfn = fn−"fn = n#1\ Gt �

fr
1pr

"30#

In view of eqns "21# and "25#\ it is easy to prove the relation

tan u �
Gn

Gt

"31#

If Gn � 9\ then u � 9\ which means no kinking[ Thus\ Gn is the drive force behind the kinking of
the crack[ In brief\ the energy release rate G can be decomposed into two components] "0# normal
component Gn to drive the crack to rotate without propagation^ "1# tangent component Gt to drive
the crack to propagate without rotation[

The R curve can be expressed as the function of crack growth Da\ namely\ R � R"Da#\ see Kra}t
et al[ "0850#[ At a macroscopic level\ crack resistance R is proposed as R � R"H#\ where H is the
history recording parameter[ Therefore\ H is consistent with Da at a microscopic level[ It thus
follows that dH can be determined in an averaging sense]

dH � dr �
dA
1pr

� z0¦z = z dr

�
r
1Xfn = fn−"fn = n#1¦0

frr
1 1

1

dl �
pr2

1
G dl "32#

Thus\ the threshold R can be de_ned as

R � R"H#\ Hþ � l¾h" f\ j#\ h �
pr2

1
G "33#

4[ Numerical tests on cracking

The kinetic equation of the basic internal variable\ eqn "27#\ as a speci_c form of eqn "03#\ is
the cornerstone of the normality structure[ The subsequent deduction makes sense only if eqn
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Fig[ 2[ A specimen with one set crack array under tension[

"27# can predict crack propagation with satisfactory accuracy since one basic internal variable
corresponds to one crack[ Firstly\ an explicit Gibbs energy "or complementary energy# function c

in stress space should be established to determine the conjugate force[
Consider a perfectly brittle solid of volume V9 weakened by n parallel penny!shaped cracks with

the same radii r\ i[e[\ ja � "n\ r#\ as shown in Fig[ 2[ Assuming self!similar growth of penny!shaped
cracks\ the Gibbs energy takes the following form\ see\ e[g[\ Krajcinovic et al[ "0880# and Budiansky
and O|Connel "0865#

c � c9¦rr2"As1¦Bt1# "34#

where c9 is the Gibbs energy of the virgin material under the same stress state^ r �"n:V9# is the
volumetric density of cracks^ s and t are normal and shear components\ respectively\ of stress
tensor sij on the crack surface with the normal vector ni

s � nisijnj\ t � zsisi−s1\ si � sijnj^ "35#

A\ B are associate with the crack shape and the elastic constants of e}ective medium around the
crack[ If the crack is penny!shaped and crack interaction is neglected\ an explicit form of A\ B is
obtained

A �
7

2E9

"0−v1
9# B �

1
1−v9

A "36#

where E9\ n9 are elastic constants of intrinsic elastic media[ Note that the explicit A\ B is helpful to
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obtain analytic results\ but it goes beyond the framework of the self!consistent method at this
point[ Then the conjugate forces can be determined with eqn "15#1

" fn#i � 1r2 ð"1"A−B#sis¦BsijsjŁ\ fr � 2r1"As1¦Bt1# "37#

With eqn "30#\ the energy release rates are

Gn �
1r
p

z3"A−B#1s0¦3"A−B#Bs1¦B1s2\ Gt �
2r
1p

"As1¦Bt1# "38#

where

s0 � s1t1\ s1 � ssisijsj−s1sksk\ s2 � sisimsmjsj−"sksk#1 "49#

which are stress invariants on the crack surface[ In view of eqn "25#

n¾i �
7
2r

1"A−B#"sis−nis
1#¦B"sijsj−nisksk#

As1¦Bt1
r¾ "40#

The kinking angle is determined by eqn "31#\

tan u �
Gn

Gt

�
3
2

z3"A−B#1s0¦3"A−B#Bs1¦B1s2

As1¦Bt1
"41#

4[0[ Kinkin` an`le

If the specimen in Fig[ 2 is subjected to a uniform tensile stress s¹ \ the stresses de_ned in eqn "35#
become

si � "s¹ sin b\ 9\ 9#\ s � s¹ sin1 b\ t � s¹ sin b cos b "42#

and with eqn "49#

s0 � s¹3 sin5 b cos1 b\ s1 � s¹3 sin3 b cos1 b\ s2 � s¹3 sin1 b cos1 b "43#

By using eqns "38# and "36#

Gn �
1rs¹1B sin b cos b

p
"0−n9 sin1 b#\ Gt �

2rs¹1B sin1 b

3p
"1−n9 sin1 b# "44#

Therefore\ the kinking angle u is obtained as

tan u �
Gn

Gt

�
7
2

0−n9 sin1 b

1−n9 sin1 b
cot b "45#

1 Note that the conjugate force f corresponds to one single crack[ Thus\ n\ r in eqn "34# should be considered as the
average measures of na\ ra during the derivation[



G[ Swoboda\ Q[ Yan` : International Journal of Solids and Structures 25 "0888# 0624Ð06440635

Fig[ 3[ Crack angle vs kinking angle in tension] "a# in~uences of Poisson|s ratio^ "b# comparison with s"u#max and S"u#max

theories[

which is illustrated in Fig[ 3"a#[ Obviously\ Poisson|s ratio n9 has little in~uence on the kinking
angle[ The same problem in Fig[ 2 in a plane strain case can be solved by s"u#max theory "see Sih\
0882# as

sin u¦"2 cos u−0# cot b � 9 "46#

or by S"u#max theory

1"0−1n9# sin"u−1b#−1 sin ð1"u−b#Ł−sin 1u � 9 "47#

All the three solutions are illustrated in Fig[ 3"b# with the same n9 � 0
2
[ Given the fact that the u in

eqn "45# originating from eqn "25# is an average kinking angle rather than the real one in eqns
"46# and "47#\ it is quite evident that the proposed equation of rotation rate\ eqn "25#\ can describe
the microscopic kinking mechanism with su.cient accuracy[

4[1[ Uniaxial loadin` process

In this subsection\ a uniaxial loading process on the same con_guration in Fig[ 2 is done to show
the stressÐstrain process macroscopically and crack rotation microscopically[ The local damage
surface de_ned in eqns "28# and "30# is

F � G−R � zG1
n¦G1

t −R � 9 "48#

Substituting eqn "44# into eqn "48#\ the critical stress s¹ on the damage surface is
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Table 0
Parameters used in uniaxial ten!
sile test

E9 49999[9 MPa
n9 9[1 *

r9 1[41 cm
r 0999[9 0:m2

b9 34[9 ð>Ł

s¹ �X
3pR

rB sin1 bð53 cot1 b"0−n9 sin1 b#1¦8"1−n9 sin1 b#1Ł
"59#

In view of eqn "40#\

n¾0 �
05 cos1 b

2r sin b 0
0−n9 sin1 b

1−n9 sin1 b1 r¾\ n¾1 � 9\ n¾2 � −
05 cos b

2r 0
0−n9 sin1 b

1−n9 sin1 b1 r¾ "50#

The axial strain o and axial stress s¹ are related by the apparent compliance C[ During the uniaxial
loading\ the complementary energy 0

1
Cs¹1 should equalize c in eqn "34#[ Therefore\

o � Cs¹ \ C �
0
E9

¦1rr2 sin1 b"A sin1 b¦B cos1 b# "51#

The states during the uniaxial loading is fully determined by eqns "59#Ð"51#[ The required
parameters are listed in Table 0[ The chosen R!curve\ as shown Fig[ 4"a#\ is from Indiana limestone
"see Hoagland et al\ 0862#[ Eight loading steps are used[ The results are shown in Fig[ 4[ The _rst
loading step is elastic[ The mark "=# is put in the process curves to denote each loading step[ As
shown in Fig[ 4"a#\ the critical point is the peak point corresponding to the maximum loading in
the stressÐstrain curve in Fig[ 4"c#[ Crack growth between initial and peak point is sub!critical
growth[ After the peak point\ crack growth is unstable[ The trajectory of the end points of the
vector r � rn in the propagating process is drawn in Fig[ 4"b#\ which correctly re~ects the tendency
of crack rotation[ As shown in Fig[ 4"d#\ the brittle stressÐstrain behaviour is well described[ In
short\ the kinetic equations of basic internal variables can describe microcracking very well\ either
microscopically or macroscopically[

5[ Kinetic equations of damage vectors

Without a loss of generality\ we focus on one set of roughly parallel cracks\

j � "j0\ j1\ [ [ [ \ jn#\ ja � "na\ ra# "52#

which corresponds to one damage vector z � "n\ v#\ where
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Fig[ 4[ "a# R curve^ "b# damage propagating process^ "c# stress vs damage growth^ "d# macroscopic stressÐstrain relation[

n �
0
n

s
n

a�0

na\ v �
0

V9
s
n

a�0

r2
a "53#

see also eqns "1#Ð"3#[ In terms of the basic internal variables\ the potential function Q is obtained
with eqns "04# and "27#\

Q"j\ f\ F# �
0

1V9
s
n

a�0

l¾a $fan ="I−nana# = fan¦0
f a

r ra

1 1
1

% "54#

and the damage surface F with eqns "28# and "39#
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Fa � Ga−Ra\ Ga �
0

pr1
a
Xfan ="I−nana# = fan¦0

f a
r ra

1 1
1

"a � 0\ 1\ [ [ [ \ n# "55#

Now consider the transformation "f\ j\ F#c"g\ z\ F#[ In view of eqns "15# and "53#\ f � f"g# is
achieved

"fan\ f a
r# � V9 6

1c

1na
\
1c

1ra7� V9 6
1c

1n
=
1n

1na
\
1c

1v

1v

1ra7� 6
gn

r
\ 2r1

a`v7 "56#

where r � n:V9 is the volumetric density of the cracks^ ` is the thermodynamic force conjugate to
the damage vector

` �
1c

1z
� 6

1c

1n
\
1c

1v7� "gn\ `v# "57#

In order to determine j � j"z#\ the inverse relation of eqn "53#\ one set of _ctitious basic internal
variables j¼ is introduced to replace j

j¼ � "j¼0\ j¼1\ [ [ [ \ j¼n#\ j¼a � 6n\ 2X
v

r7 "58#

Evidently\ j¼ satis_es the conditions for _ctitious basic internal variables[ Since the _ctitious cracks
are identical with each other\ the damage surface of the damage vector\ F\ is the same as that of
each _ctitious crack\ i[e[\ F � Fa and l¾ � l¾a[ Substitute eqns "56# and "58# into eqn "54#

Q"j\ g\ F# �
l¾

1r $gn ="I−nn# = gn¦0
2v`v

1 1
1

% "69#

With eqn "08#\ the kinetic equation of the damage vector is

z¾ � "n¾\ v¾ # �
1Q"z\ g\ F#

1`
�

l¾

r 6"I−nn# = gn\ 0
2v

1 1
1

`v7 "60#

Similarly\ the damage surface F is obtained by substituting eqns "56# and "58# into eqn "55# and
with a minor modi_cation F �"pr1

a r:z1#Fa\

F � G−R\ G1 �
0
1 $gn ="I−nn# = gn¦0

2v`v

1 1
1

% "61#

The kinetic equation eqn "60# can be recast as

6
n¾

v¾ 7�
l¾

r
L 6

gn

`v7\ L � &
I−nn 9

9 0
2v

1 1
1' "62#
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Evidently\ L satis_es the positive de_nite condition and Onsager reciprocal relations\ see e[g[
Malvern "0858#[ By introducing L\ Q and G have the compact form]

Q �
l¾

1r
` = L = `\ G1 �

0
1

` = L = ` "63#

6[ Kinetic equations of damage tensor

The procedures for obtaining the kinetic equation of the damage tensor V de_ned in eqn "4# are
parallel to these for the damage vectors z[ Note that here the damage vectors z should be considered
as the basic internal variables[ For the full set of damage vectors de_ned in eqn "2#\ the general
potential function is

Q"z\ g\ F# � s
m

m�0

l¾m

1rm

`m = Lm = `m "64#

and the damage surface F is one set of the following damage surfaces

Fm � Gm−Rm\ G1
m � 0

1
`m = Lm = `m "m � 0\ 1\ [ [ [ \ m# "65#

Now consider the transformation "g\ z\ F#c"Y\ V\ F
 #[ In view of eqns "57# and "4#\ g � g"Y# is
achieved

`m � "`m
n\ `m

v# � 6
1c

1nm
\
1c

1vm7� 6
1c

1V ]
1V
1nm

\
1c

1V ]
1V
1vm7

� Y] "vm"Inm¦nmI#\ nmnm# "no summation for m# "66#

where Y is the thermodynamic force conjugate to the damage tensor

Y �
1c

1V � −
1f

1V "67#

In order to determine z � z"V#\ the inverse relation of eqn "4#\ three characteristic damage vectors
z¼ are introduced as the _ctitious internal variables to replace z

z¼ � "z¼0\ z¼1\ z¼2#\ z¼n � "nn\ vn#\V � s
2

n�0

vnn
nnn "68#

where nn and vn are the principal directions and values of the damage tensor[ For z¼\ all volumetric
densities rn are the same\ i[e[\ r0 � r1 � r2 � r[ In terms of the characteristic damage vectors\ the
damage potential becomes

Q"z¼\ g\ F
 # � s
2

n�0

l¾n

1r
`n = Ln = `n "79#

and the damage surfaces F
 become
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Fig[ 5[ Schematic vertex structure in the damage surface F
 [

F
 n � Gn−Rn\ G1
n � 0

1
`n = Ln = `n "n � 0\ 1\ 2# "70#

6[0[ Vertex!like kinetic equations

Using eqns "66# and "62#\ G1
n can be recast as

G1
n � 0

1
`n = Ln = `n � 0

1
Y] Jn] Y "no summation for n# "71#

where2

Jn � v1
n "In¦nI# ="I−nn# ="In¦nI#¦0

2vn

1 1
1

nnnn � v1
n 03Tn¦

8
3

Nn1
"no summation for n# "72#

where

Nn � nnnn\ Tn � Tn
ijkl �

0
1
"ninkdjl¦ninldjk¦njnkdil¦njnldik#−ninjnknl "73#

Then the damage surface of z¼ de_ned in eqn "70# can be recast as

F
 n � Gn−Rn\ G1
n � 0

1
Y] Jn] Y "n � 0\ 1\ 2# "74#

The overall damage surface of the damage tensor\ F
 \ is the inner envelope of the damage surfaces
of F
 0\ F
 1 and F
 2 de_ned in eqn "74#[ Obviously we can expect some pointed vertices on F
 [ One
of them is shown in Fig[ 5[

In view of eqns "79# and "71# and incorporating r into ln\ the damage potential of the damage
tensor is obtained as

Q"V\ Y\ F
 # � 0
1
Y]"l¾nJn#] Y "75#

2 To make a compact formulation\ the superscript n in nn is dropped in eqns "72# and "73#[
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where the multipliers l¾n are associated with the damage surfaces F
 [ Noting the symmetry of Jn\
the kinetic equation is obtained as

Vþ �
1Q"V\ Y\ F
 #

1Y
�"l¾n\ Jn#] Y �"l¾0J0¦l¾1J1¦l¾2J2#] Y "76#

which can be illustrated geometrically in Y space by Hill|s "0856# essential structure[3 It indicates
that the direction of Vþ is uncertain but con_ned in the damage cone\ which is normal to the
damage surface at a vertex\ as shown in Fig[ 5[

6[1[ Smooth kinetic equations

The vertex!like damage surface is associated with an uncertain kinetic equation[ The phenom!
enological eqn "0# exists only if there exists a corresponding smooth damage surface[ In this
subsection\ the smooth damage surface is pursued by a parallel way to plasticity[

The tensors Tn and Nn are associated with shear and normal components of a second!order
tensor\ respectively\ on the surface with the normal vector nn[ For example\ the normal stress sn

and shear stress tn on the surface are s1
n � s] Nn] s and t1

n � s] Tn] s where s is the stress tensor[
Similarly\ "Ys

n #1 � Y] Nn] Y and "Yt
n#1 � Y] Tn] Y de_ne the normal and shear components of the

conjugate force Y\ respectively\ on the surface[ In view of eqns "71# and "72#\ the energy release
rate of the damage vector can be recast as

Gn � z1vnYn\ Yn � z"Ys
n #1¦" 2

3
Yt

n#1\ "no summation for n# "77#

Essentially\ Yn is the resultant force4 of the conjugate force Y on the surface[
According to eqn "74#\ the overall damage surface of the damage tensor\ F
 \ can be recast as the

following condition]

F
 ] G0 ¾ R0\ G1 ¾ R1\ G2 ¾ R2 "78#

which is similar to the Tresca yield condition "see e[g[ Malvern\ 0858# which is also vertex!like[
Note that the Mises yield condition can be considered as the smoothed version of the Tresca yield
condition[ In view of the parallel relations between the damage surfaces and the yield conditions\
see Table 1\ the way of smoothing the Tresca yield condition into the Mises yield condition\ can
be performed directly to smooth F
 into a smooth overall damage surface F	

F	 � G	−R	 \ G	1 � G1
0¦G1

1¦G1
2 "89#

where the general energy release rate G is\ due to eqns "71# and "72#\

3 Although Hill|s theory is concerned with the elasto!plastic behaviours at the stressÐstrain level\ it can be used here
directly\ because the inelastic strain od de_ned in eqn "02# epitomizes plastic and damaging strains\ and eqn "08# indicates
that z¾m\ `m and od\ s have precisely parallel relations[

4 The coe.cient 2 in eqn "77# originates from the order of the moment of radii in eqn "3#[ If the order is 3\ Yn is exactly
the resultant force[
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Table 1
Comparison of yield and damage surfaces

Plasticity Damage

DR "Drive force# s Y

DR|s normal and tangent components on s1
n � s] Nn] s "Ys

n #1 � Y] Nn] Y
a surface

t1
n � s] Tn] s "Y t

n#1 � Y] Tn] Y

E}ective DR on the surface tn Yn � z"Ys
n #1¦" 2

3
Y t

n#1

The characteristic acting surfaces of tn\ Yn Three orthogonal pure shear planes Three orthogonal principal planes
of stress tensor$ s of damage tensor V

Yield:damage surface t0 ¾ ðtŁ\ t1 ¾ ðtŁ\ t2 ¾ ðtŁ "the Tresca G0 ¾ R0\ G1 ¾ R1\ G2 ¾ R2 "F
 ^
condition# where Gn � z1vnYn#

Smoothed surface zt1
0¦t1

1¦t1
2 ¾ ðt½Ł "the Mises zG1

0¦G1
1¦G1

2 ¾ R	 "F	 ] the
condition# smoothed F	 #

$ Since sn � 9 on a pure shear plane\ both tn and Yn can be considered as the resultant forces of the drive force s

and Y\ respectively\ on the characteristic acting surfaces[

G1 �
0
1

Y] J] Y\ J � J"V# � s
2

n�0

Jn � s
2

n�0

v1
n 03Tn¦

8
3

Nn1 "80#

For the smooth damage surface F	 the associated damage potential is

Q"V\ Y\ F	 # � 0
1
l¾Y] J] Y "81#

As compared with eqn "75#\ the introduction of F	 implies l¾0 � l¾1 � l¾2 � l¾[ Therefore\ the kinetic
equation of the damage tensor is

Vþ � l¾
1Q"V\ Y\ F	 #

1Y
� l¾J] Y "82#

which is exactly the phenomenological eqn "0# pursued in this paper[

7[ Conclusion

The essential problem of this paper has been answered through the deduction toward the
phenomenological eqn "0#[ The properties of microcracks\ e[g[\ the shape\ orientation\ etc[\ gen!
erally present discontinuous distributions in a solid\ which leads to vertex!like constitutive equa!
tions[ The deduction toward the phenomenological eqn "0# are in reality a series of {smoothing|
procedures] "0# describing a microcrack by a vector variable ja^ "1# epitomizing a group of parallel
microcracks by a damage vector zm^ "2# condensing all damage vectors z into three characteristic
damage vectors z¼ or the damage tensor V^ "3# smoothing the vertex!like damage surface of the
damage tensor\ F
 \ into a smooth one F	 [

The _rst {smoothing| step is to describe one real crack by one self!similar growth penny!shaped
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crack ja[ The kinetic equation of ja is the cornerstone of all the deduction[ To a certain extent\ it
de_nes the materials which the deduced constitutive equations represent[ Its e}ectiveness to
describe microcracking is demonstrated in Section 4[ The second and third {smoothing| steps are
asymptotic approaches for one set of condensed internal variables z to describe the thermodynamic
system characterized by the numerous basic internal variables j[ Mathematically\ it is the way to
deal with the uncertainty of j � j"z#[ In this paper\ an e}ective smoothing procedure for the
uncertainty is proposed[ The fourth {smoothing| step\ i[e[\ smoothing F
 into F	 \ is required for
the existence of the phenomenological eqn "0#[ The speci_c form of F	 de_ned in eqn "89# is
achieved by a parallel way to plasticity[ In terms of the driving forces and the smoothing procedures\
F
 is to F	 what the Tresca yield condition is to the Mises yield condition[ These smoothing
procedures are exactly in the spirit of continuum damage mechanics[

As another result of such smoothing\ the damage characteristic tensor J\ de_ned in eqns "80#
and "73#\ can be determined uniquely using the current damage tensor without resorting to
microscopic parameters or unknown empirical coe.cients[ J is a positive!de_nite anisotropic
tensor[ It is not adequate to approximate J by an isotropic tensor[ As shown in eqn "82#\ Vþ is not
coaxial with J "in the sense of principal axes# unless V is isotropic or J is coaxial with V[ The
damage characteristic tensor J represents the in~uence of the existing anisotropic microstructure
on the damage propagation[

The damage variable takes the form of the third!order moment of microcrack radii in the sense
of eqn "3b# and the damage tensor is just the second!order fabric tensor[ From a purely statistical
viewpoint\ the order is not necessary to be three[ As pointed out in footnote 4\ the order has minor
in~uence on the deduced formulation^ the fourth!order moment has a speci_c mechanical meaning[
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